
1/f noise formed by time intervals between particle detections

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 L741

(http://iopscience.iop.org/0305-4470/23/15/009)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 08:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) L741-L747. Printed in the U K  

LETTER TO THE EDITOR 

l/f noise formed by time intervals between particle detections 

T Kobayashi 
Department of Physics, Shiga University of Medical Science, Ohtsu, Shiga 520-21, Japan 

Received 5 April 1990 

Abstract. The series formed by time intervals between particle detections are generated by 
using the model wherein increasing and decreasing probabilities of particle number in a 
very short time interval are equivalent. These have 1/ f spectra in a similar way to the 
series generated in our previous work by using the branching process model. The self- 
correlation function between the detections, however, behaves in a different way from that 
expected from a series with a pure 1/ f spectrum. Owing to the anomalously large power 
spectral density at f = 1, the correlation function behaves as F-=, where p is a count 
difference between two detections. 

Since the first observation of the l/f spectrum in shot noise [l], l/f behaviour, the 
frequency in time or space, has been found in many phenomena, such as changes in 
the weather [2], music [3], the galaxy distribution in the universe [4] etc. In order to 
elucidate these phenomena many theoretical works have been published [ 5-10], but 
many problems are yet opened to be solved. Recently the branching process model 
( BMP) [ 111 was applied to generate series with a l/f spectrum which was formed by 
time intervals between successive detections of a particle existing in the system [ 121. 
Here the frequency is related to detection counts and not to time. In that case, a system 
was considered where a particle is subjected to capture and binary branching reactions, 
and a particle detector of absorption type is placed in this system. The probabilities 
that n particles are found in the system at time t > 0 and that no detection is recorded 
during the time interval (0, t) ,  assuming k particles exist in the system at t =0, were 
described in the closed forms. Whether a particle detection has occurred or not in a 
very short time interval was then decided successively using the Monte Carlo method 
with the above probabilities in the case that recording more than two counts in this 
time interval is negligible. Two series were obtained: one formed by particle numbers 
at successive times and the other formed by time intervals between successive detections. 
The spectrum of the latter series has a 1/f behaviour, while the former series behaves 
as 1/ f*, because the correlation between count intervals is not as strong as that between 
particle numbers. It was, however, possible to obtain a l/f spectrum only when the 
system is in a critical state where the absorption probability of a particle in a short 
time interval is equivalent to the production probability of a particle by a branching 
process in this interval. The above results do not answer the question of whether a 
particular process such as branching plays a determinant role for the l/f behaviour. 
In the present work, therefore, we tried to obtain a l /f  spectrum without assuming a 
particular process. 

A critical state can also be realised when the probability that the particle number 
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N, at a time t increases in a very short time interval A t  after t is equivalent to the 
probability that the number N, decreases in At. This consideration (critical state model, 
CSM) was applied to generate the series of time intervals between successive detections. 
In the simulations, the mean number of detected particles ND in A t  was assumed to 
be a product N, x (the detection efficiency E of a particle in A t ) .  When E is small 
enough, the resulting very small ND is considered as the particle-detection probability 
in A t  and whether a particle detection has occurred or not in A t  can be decided 
successively by using the Monte Carlo method to form a series of the time intervals 
between successive detections. The particle number N, was assumed to change in A t  
after the time t mostly with a Gaussian distribution around N, .  

Figure 1 shows the power spectral density (PSD) of the series generated, starting 
from the initial particle number No of 5000, for various standard deviations CT of the 
Gaussian distribution and detection efficiencies E. The PSD converges to a finite value 
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Figure 1. The PSD for the Gaussian distribution in the 
cases where: ( a )  U = 5.0 and E = 2.0 x IOw6; ( b )  U = 5.0 
and ~=l.OxlO-'; (c) u = I O . O  and ~=5.0x10-~. The 
broken lines give the l / f  behaviour. The crosses represent 
the PSD calculated from the series and the open diamonds 
are the PSD with the white noise subtracted. 
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(white noise component of a spectrum) in the high-frequency range, and therefore the 
PSD with the white noise component subtracted is also shown in figure 1. The PSD 

behaves evidently as 1/ f over three decades of frequency in the figure. Shown in figure 
2 are the results in the case where the particle number changes in A t  with a Lorentzian 
distribution, where the PSD also behaves as l/$ This behaviour of the PSD shown in 
figures 1 and 2 is similar to that in the case of simulation by the BPM [12]. Although 
no particular type of process occurring in the system is assumed, a particle detection 
has a stochastic correlation with a particle number in the system, which may cause 
the l/f behaviour. Considering all the results obtained in the previous [ 121 and present 
works, it is possible to conclude that the 1/ f behaviour of the PSD appears only when 
the system is in a critical state but the type of processes by which a critical state is 
realised is not important. 
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Figure 2. The PSD for the Lorentzian distribution in the case where width=5.0 and 
E = 5.0 x 1K6. The broken line gives the 1/ f behaviour. The data points are defined as i n  
figure 1. 

Next the self-correlation functions C ( p )  of the series generated by using the CSM 

and BPM are compared with each other, where p describes a count difference between 
two detections. The correlation functions C ( p )  obtained from figures 1 and 2 using 
the Wiener-Khintchine relation are shown in figure 3 in double logarithmic scales. 
The function C ( p )  behaves as p-a (a = 0.1) at small p, but the correlation decreases 
at large p more slowly than expected from the p-* behaviour. In figure 4 are shown 
the functions C ( p )  calculated by using the BPM, where A, and At  are the branching 
rate of a particle and a time step in the simulation, respectively. Owing to the limited 
computing time and memory, it was rather difficult to make the starting particle number 
No as large as in the case of the CSM. On the other hand, a small No is inappropriate 
in the CSM case because of the symmetrical distribution of the change in particle 
number. If the CSM simulation is started from a small No,  a negative and unreasonable 
particle number will be generated frequently. The p-OI behaviour is evident over three 
decades of p in the BPM cases, but the exponents a, being approximately 0.2, are 
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Figure 3. The correlation functions calculated from the PSD. ( a ) - ( c )  correspond to those 
in figure 1, and ( d )  is the function calculated from the PSD in figure 2. The exponents a 
are ( a )  0.13, ( b )  0.11, ( c )  0.11 and ( d )  0.09. 

different from those in the CSM cases. The behaviour wL-a of C ( p )  is probably the 
result of the fractal properties of the series. 

The function C ( p )  calculated from a pure l/f distribution behaves differently 
from that shown in figures 3 and 4 (see figure 5) .  The PSD at f =  1 for the series 
generated by using the CSM and B P M  is several times greater than expected from the 
l /f  behaviour, although it is not shown in figure 1. In order to check the effect of the 
anomalous PSD at f =  1 on C ( p ) ,  the correlation functions for these series were 
calculated by modifying the PSD at f =  1 to be twice that of the PSD at f = 2 ,  two 
examples of which are given in figure 6. The similarities between the curves in figures 
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Figure 4. The correlation functions obtained by using the 
BPM in the cases where: ( a )  A, , ,A t  = 1 . 5 ~  and No= 10; 

1 ( b )  &, ,At  =2.0x and No= 10; (c )  &,,At =3.0x and 
No= 1. The estimated exponents (Y are ( a )  0.17, ( 6 )  0.21 and 
(c)  0.18. 

5 and 6 suggest that the p-OL behaviour of C ( p ) ,  not expected from the llfspectrum, 
comes from the anomalous PSD at f =  1 of the series. 

In table 1 is shown the ratio R = S , / S , ,  where S, and S, are the PSD at f =  1 
calculated from the generated series and that expected from the 1/ f spectrum, respec- 
tively. As can be seen in table 1, the values of R in the BPM cases are approximately 
3, while those in the CSM cases are larger and, moreover, are scattered. Too large PSD 

at f =  1 in the CSM cases may result in deviation from the p-" behaviour. 
In conclusion, a series with the l/f spectrum can be generated by using the CSM 

as well as by using the BPM, which suggests whether a system in a critical state plays 
a determinant role for the l /f  behaviour. The correlation functions of the series behave 
as p-", probably due to the fractal properties of the series. This behaviour of the 
correlation function, not expected from a series with a pure l /f  spectrum, is suggested 
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Figure 5. The correlation function calculated from a pure l/f distribution. 
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Figure 6. The correlation functions calculated by modifying the PSD at f= 1 to be twice 
that of the PSD at f = 2 .  ( a )  and ( b )  correspond to ( b )  in figure 3 and ( U )  in figure 4, 
respectively. 

Table 1 .  The ratio R = S,/S,. ( a ) - ( d )  in the CSM series correspond to those in figure 3 
and ( a ) - ( c )  in the BPM series are those in figure 4. 

CSM series R BPM series R 
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to come from anomalously long correlation between the particle detections as reflected 
in the anomalously large PSD at f =  1. 
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